Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems

نویسنده

  • Howard S. COHL
چکیده

We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We compare both of these expansions to generate addition theorems for the azimuthal Fourier coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

Power Series Solution of the Hamilton-Jacobi-Bellman Equation for Descriptor Systems, Report no. LiTH-ISY-R-2701

Optimal control problems for a class of nonlinear descriptor systems are considered. It is shown that they possess a well-defined analytical feedback solution in a neighborhood of the origin, provided stabilizability and some other regularity conditions are satisfied. Explicit formulas for the series expansions of the cost function and control law are given.

متن کامل

From Fourier to Gegenbauer: Dimension Walks on Spheres

In this article we provide a solution to Problem 2 in Gneiting, 2013. Specifically, we show that the evenresp. odd-dimensional Schoenberg coefficients in Gegenbauer expansions of isotropic positive definite functions on the sphere S d can be expressed as linear combinations of Fourier resp. Legendre coefficients, and we give closed form expressions for the coefficients involved in these expansi...

متن کامل

Supersymmetric Techniques Applied to the Jacobi Equation

The simple supersymmetric approach recently used by Dutt, Gangopadhyaya, and Sukhatme for spherical harmonics is generalized to Jacobi equation, including also the intermediate Gegenbauer case. Resumen. Un procedimiento supersimétrico simple recientemente usado por Dutt, Gangopadhyaya y Sukhatme para los harmonicos esféricos, es generalizado a la ecuacion de Jacobi, incluyendo tambien el caso i...

متن کامل

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013